分子动力学模拟中的控制器(Controller)可用于修改模拟过程中的原子坐标和原子速度等参量,实现对系统特定参量的控制。例如,控温器可以用于实现NVT系综,控压器可用于实现NPT系综。在MindSponge分子动力学模拟框架下,控温和控压可以基于控制器Controller来实现。更多关于MindSponge分子动力学模拟框架的信息,如安装和基本使用等,可阅读MindSponge专栏里的文章。
自定义Controller
Controller位于control路径下,除了已经定义好的一些控温控压算法之外,用户还可以直接继承Controller来实现自己需要的系统控制算法。例如,我们可以定义一个缩放原子速度的控制器:
class MyController(Controller):
def construct(self,
coordinate: Tensor,
velocity: Tensor,
**kwargs):
return super().construct(coordinate, velocity/2, **kwargs)
它的功能是保持原子当前位置不变,但是速度减半。
完整的MindSponge用例如下所示:
from mindspore import context, Tensor
context.set_context(mode=context.GRAPH_MODE, device_target='GPU', device_id=0)
from sponge import set_global_units, Sponge, Molecule, WithEnergyCell, UpdaterMD, ForceField
from sponge.function import VelocityGenerator
from sponge.callback import RunInfo
from sponge.control import Controller
# 自定义控制器
class MyController(Controller):
def construct(self,
coordinate: Tensor,
velocity: Tensor,
**kwargs):
return super().construct(coordinate, velocity/2, **kwargs)
# 设置全局分子动力学模拟单位
set_global_units('nm', 'kj/mol')
# 根据内置模板生成水分子系统
system = Molecule(template='water.spce.yaml')
# 将分子沿X轴方向复制一份,现在体系有2个水分子
system.reduplicate([0.3, 0, 0])
# 基于前面的分子系统,再复制一份,然后合并到system里面,此时一共是4个水分子
new_sys = system.copy([0, 0, -0.3])
system.append(new_sys)
# 选择SPCE力场
potential = ForceField(system, parameters='SPCE')
# 类似于深度学习中的WithLossCell,绑定了分子系统和力场的信息
withenergy = WithEnergyCell(system, potential)
# 配置MD参数
temp = 300
vgen = VelocityGenerator(temp)
velocity = vgen(system.shape, system.atom_mass)
# 构建迭代器,并且传入我们自定义的控制器
updater = UpdaterMD(
system=system,
time_step=1e-3,
velocity=velocity,
integrator='velocity_verlet',
temperature=300,
controller=MyController(system),
)
# 绑定系统、力场和迭代器三者的内容
mini = Sponge(withenergy, optimizer=updater)
# 使用回调函数,每一步都会打印输出能量、温度等信息
run_info = RunInfo(1)
mini.run(5, callbacks=[run_info])
因为每次控制器被调用都会使得速度减半,而且按照执行的顺序,控制器在常规的控温之后,因此运行过程中体系的温度无法达到我们预期的300K。
如果去掉这个降低速度的控制器,那么体系的温度和动能一下子就上去了,并且在稳定之后,温度会逐渐收敛在300K附近。
总结概要
本文介绍了在MindSponge分子动力学模拟框架先实现自定义Controller控制器的方法,通过调控体系中的原子坐标和原子速度等,来控制系综的参量。MindSponge分子模拟框架基于MindSpore深度学习框架开发而成,对于开发者尤其是深度学习开发者来说,非常的友好。
版权声明
本文首发链接为:
https://www.cnblogs.com/dechinphy/p/controller.html
作者ID:DechinPhy
更多原著文章:
https://www.cnblogs.com/dechinphy/
请博主喝咖啡:
https://www.cnblogs.com/dechinphy/gallery/image/379634.html